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Abstract. In order to investigate whether galaxy structures are compatible with the predictions of the standard LCDM
cosmology, we focus here on the analysis of several simple and basic statistical properties of the galaxy density field.
Namely, we test whether, on large enough scales (i.e.,r > 10 Mpc/h), this is self-averaging, uniform and characterized by a
Gaussian probability density function of fluctuations. These are three different and clear predictions of the LCDM cosmology
which are fulfilled in mock galaxy catalogs generated from cosmological N-body simulations representing this model. We
consider some simple statistical measurements able to tests these properties in a finite sample. We discuss that the analysis
of several samples of the Two Degree Field Galaxy Redshift Survey and of the Sloan Digital Sky Survey show that galaxy
structures are non self-averaging and inhomogeneous on scales of ∼ 100 Mpc/h, and are thus intrinsically different from
LCDM model predictions. Correspondingly the probability density function of fluctuations shows a "fat tail" and it is thus
different from the Gaussian prediction. Finally we discussother recent observations which are odds with LCDM predictions
and which are, at least theoretically, compatible with the highly inhomogeneous nature of galaxy distribution. We point out
that inhomogeneous structures can be fully compatible withstatistical isotropy and homogeneity, and thus with a relaxed
version of the Cosmological Principle.
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INTRODUCTION

In the past twenty years many observations have been dedicated to the study of the large scale distributions of galaxies
[1, 2, 3, 4, 5, 6, 7]. In particular during the last decade two ambitious observational programs have measured the redshift
of more than one million objects [6, 7]. All these surveys have detected larger and larger structures, thus finding that
galaxies are organized in a complex network of clusters, super-clusters, filaments and voids. For instance the famous
“slice of the Universe”, that represented the first set of observations done for the CfA Redshift Survey in 1985 [8],
mapped spectroscopic observations of about 1100 galaxies in a strip on the sky 6 degrees wide and about 130 degrees
long. This initial map was quite surprising, showing that the distribution of galaxies in space was anything but random,
with galaxies actually appearing to be distributed on surfaces, almost bubble like, surrounding large empty regions, or
“voids.”. The structure running all the way across the survey between 50 and 100 Mpc/h2 was called the “Great Wall”
and at the time of the discovery was the largest single structure detected in any redshift survey. Its dimensions, limited
only by the sample size, are about 200×80×10 Mpc/h, a sort of like a giant quilt of galaxies across the sky [9]. More
and more galaxy large scale structures were identified in theother redshift surveys such as the Perseus-Pisces super-
cluster [3] which is one of two dominant concentrations of galaxies in the nearby universe. This long chain of galaxies
lies next to the the so-called Taurus void, which is a large circular void bounded by walls of galaxies on either side of
it. The void has a diameter of about 30 Mpc/h. Few years ago, inthe larger sample provided by the Sloan Digital Sky
Survey (SDSS), it has been discovered the Sloan Great Wall [10], which is a giant wall of galaxies which may be the
largest known structure in the Universe, being nearly threetimes longer than the Great Wall. The discovery of larger
and larger structures was surprising because standard cosmological models unambiguously predict that fluctuations
should be small on large scales with rapidly decaying correlations; i.e., the spatial extension of structures in these
models should be limited to some tens Mpc/h.

1 In the proceedings of the “Invisible Universe International Conference”, AIP proceedings series.
2 We useH0 = 100h km/sec/Mpc for the value of the Hubble constant.
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PREDICTIONS OF LCDM MODELS

Before discussing whether the large scale structures identified in galaxy catalogs arecompatiblewith the prediction of
the standard LCDM cosmology, let us briefly discuss which, are the main features of the galaxy two-point correlation
functionξ (r) according to this model (see Fig.1). There are three different regimes and three different length scales
r0, rc andrbao [11, 12, 13]. Forr > r0 the behavior is fixed by the physics of the early universe, being thus an imprint
of the initial conditions. (i) On scales smaller thanr0, whereξ (r0) = 1, matter distribution is characterized by strong
clustering; i.e.ξ (r) ≫ 1, about which little is known analytically and which is generally constrained by N-body
simulations where it is typically found that, forr < r0, ξ (r) ∼ r−γ with γ ≈ 1.5 (ii) The second length scale is
such thatξ (rc) = 0, and it is located atrc ≫ r0 [11]. In the range of scalesr0 < r < rc, ξ (r) is characterized by
small-amplitude positive correlations, which rapidly decay to zero whenr → rc. The third length scalerbao is located
on scales of the order ofrc. This is the real-space scale corresponding to the baryon acoustic oscillations (BAO)
at the recombination epoch. (iii) Finally in the third rangeof scales, namely forr > rc, ξ (r) is characterized by a
negative power-law behavior, i.e.ξ (r) ∼ −r−4 [11, 14]. Positive and negative correlations are exactly balanced in
such a way that

∫ ∞
0 ξ (r)d3r = 0. This is a global condition on the system fluctuations, which corresponds to the super-

homogeneous nature of the matter distribution [11, 14]; i.e., that this characterized by a sort of stochastic order and
by fluctuations that are depressed with respect to a purely uncorrelated distribution of matter (i.e. white noise). This
corresponds to the linear behavior of the matter power spectrum as a function of the wave-numberk for k→ 0 (named
the Harrison-Zeldovich tail), and it characterizes not only the LCDM model but all models of density fluctuations
in the framework of the Friedmann-Robertson-Walker metric[11, 14]. Roughly, structures correspond to positive
correlations, while negative correlations correspond to under-densities; thus the length-scalerc can be regarded as an
upper limit to the spatial extension of structures in these models.

To summarize: on large enough scalesr > r0 ≈ 10 Mpc/h the predicted density field must be uniform and weakly
correlated (and thus self-averaging — see below). In these models, on large enough scales, fluctuations are small and
thus gravitational clustering in an expanding universe gives a simple prediction, as in the linear regime initial fluctu-
ations are only linearly amplified during the growth [15, 12]. Correspondingly the probability density function (PDF)
of fluctuations remains substantially Gaussian. Indeed, the central limit theorem can be broken when correlations are
long-ranged and strong [14], while these models predict weak positive correlations beyond 10 Mpc/h and up to 150
Mpc/h and very weak negative correlations forr > 150 Mpc/h.

RECENT RESULTS ON GALAXY CORRELATIONS

There is an extensive literature on the measurement galaxy correlations properties; here we briefly review some recent
results which are useful to point out the status of the art in the field (we refer the interested reader to [16, 17, 18, 19, 13]
for more details). Few years ago Eisenstein et al. [20] determined the galaxy two-point correlation function in a
preliminary luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3). They
found thatr0 ≈ 15 Mpc/h,rbao ≈ 110 Mpc/h andrc ≈ 150 Mpc/h, thus claiming for an overall agreement with the
LCDM prediction and for a positive detection of the scalerbao at about 110 Mpc/h. More recently other authors
[21, 22, 23] measured the same estimator of the correlation function in the LRG-DR6 sample and in the LRG-DR7
sample. They found thatrc ≈ 200 Mpc/h and thatrboa≈ 100 Mpc/h, although they also showed, by considering many
realizations of mock galaxy catalogs, that the expected variance of the model is large enough that the observed baryonic
acoustic peak and larger scale signal areonlyconsistent with LCDM at the 1.5σ level. In addition Martinez et al. [22]
measured thatrc ≈ 50 Mpc/h in the Two Degree Field Galaxy Redshift Survey (2dFGRS) samples; they claimed that
rbao is detectable when the correlation function is negative. However this is not what one expects in the context of the
LCDM model where, as discussed above, the zero point of the correlation function must be a single scale for any type
of objects. Indeed both linear gravitational clustering, and biasing (i.e., threshold selection) the density field give rise
to a linear amplification of the amplitude ofξ (r) [12, 13].

In summary different authors found, in different samples, different values for the three scalesr0, rc, rbao. These
results are puzzling as the model gives an unambiguous prediction for the scalesrc and rbao, leaving however
undetermined, but in the range [5,15] Mpc/h, the scaler0. This latter behavior is generally ascribed to a luminosity
selection effect — luminosity bias. A little discussion is deserved to the problem of bias and variance in estimators,
which can instead be a major issue in these analyses [12, 13].

There have been published other very puzzling results whichseem to be in contrast with the above mentioned results.
For instance, Loveday [24], by measuring the redshift-dependent luminosity function and the comoving radial density
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FIGURE 1. Absolute value of the two-point correlation function for theΛCDM model and for the same model with the baryonic
bump (BB) at∼ 100 Mpc/h (adapted from [12]). A reference line with power law index−4 is reported to illustrate the behavior for
r > 150 Mpc/h where the correlation function becomes negative.

of galaxies in the SDSS-DR1, found that the apparent number density of bright galaxies increases by a factor≈ 3 as
redshift increases fromz= 0 to z= 0.3 [24]. To explain these observations a significant evolution in the luminosity
and/or number density of galaxies at redshiftsz< 0.3 has then been proposed [24]. However an independent test has
not been provided to support such a conclusion. Independently of the origin of this density growth, it remains that
major issue that the density is not constant and thus its determination inside this sample is very ambiguous. As the
correlation functionξ (r) measures the amplitude and the scale dependence of correlations between density fluctuations
normalizedto the sample value of the density, if this quantity is not well-defined and determined with a small error,
there can be substantial systematic (i.e. volume-dependent) effects on its estimation.

Another puzzling observation is represented by a CCD surveyof bright galaxies within the Northern and Southern
strips of 2dFGRS [7]. This shows conclusive evidences of fluctuations of∼ 30% in galaxy counts as a function of
apparent magnitude [25] (see also [26, 27] for similar observations in other galaxy samples). Further since in the
angular region toward the Southern galactic cap a deficiency, with respect to the Northern galactic cap, in the counts
below magnitude∼ 17 was found, persisting over the full area of the APM and APMBGC catalogs, this would be an
evidence that there is a large void of radius of about 150 Mpc/h implying that there are spatial correlations extending to
scales larger than the scale detected by the 2dFGRS correlation function [28, 29]. Indeed, by considering the two-point
correlation function, and thus by normalizing the amplitude of fluctuations to the estimation of the sample density, the
length-scaler0 ≈ 6−8 Mpc/h was derived [28, 29]. Structures and fluctuations at scales of the order of 100 Mpc/h or
more are at odds with the prediction of the concordance modelof galaxy formation [25, 26, 27], while the small value
of the correlation length is indeed compatible.

Summarizing the current observational situation: there are evidences that galaxy distribution exhibits large ampli-
tude fluctuations on scales of∼ 100 Mpc/h. On the other hand there are many results showing that r0 ≈ 10 Mpc/h,
while there is a substantial indetermination on the value ofrc, although in the very large volumes of the LRG sam-



FIGURE 2. Left panel: One dimensional density field with small amplitude fluctuations. Right panel: One dimensional density
field with large amplitude fluctuations

ples it was foundrc ≈ 200 Mpc/h. In what follows we try to clarify this puzzling situation, i.e. the coexistence of the
small typical length scaler0 measured by the two-point correlation function analysis with the large fluctuations in the
galaxy density field on large scales as measured by the simplegalaxy counts. The problem is that because of the large
fluctuations in galaxy counts, the estimation of the sample density is not stable and thus one must critically consider
the significance of the normalization of fluctuations amplitude to the estimation of the sample density as used in the
correlation analysis employed to measure the length scalesr0, rc andrbao.

TESTING THEORETICAL MODELS AGAINST DATA

In evaluating whether a model (CDM) is consistent with the data, it should be shown thatat least the mainstatistical
properties of the model are indeed consistent with the data.There is a number of different properties which can
one consider and which are useful to test the assumptions that have been used when one studies the consistence of a
theoretical model with real data by only considering the behavior ofξ (r). Namely the assumptions of (i) self-averaging
(ii) uniformity (or spatial homogeneity). When, inside thegiven sample, the assumption (i) and/or (ii) are/is violated
then the conclusion is that CDM model is not compatible with the properties of the data [16, 17, 19, 18]. In general
little attention is deserved to these properties and one generally assumed that these are satisfied inside a given sample
focusing directly on the behavior ofξ (r) or that of its Fourier conjugate, the power spectrum. Indeed, the use of any
statistical quantity which is normalized to some estimations of the sample density implicitly assume that a distribution,
inside the given finite sample, is self-averaging and uniform.

In order to illustrate the problems underlying these assumptions, let us consider a simple one-dimensional density
field. In Fig.2 (left panel) it is shown the case of one dimensional density field with small amplitude fluctuations. In
red we report two examples of samples with finite spatial extension. In each of the two cases one measures the sample
densityn which is “close” to the asymptotic average density〈n〉 (i.e., the ensemble average density or the average
density measured in the infinite volume limit). The rate of the difference betweenn and〈n〉 with scales is determined
by the behavior of the two-point correlation function [14].A completely different situation is represented by the one-
dimensional density field shown in Fig.2 (right panel). In this case the field is characterized by large fluctuations and
the determination of the sample densityn in different regions (red lines) does not give a useful information about〈n〉.

It is then clear that depending on the properties of the density field, one should adopt a certain statistical charac-
terization or another. While in the case shown in the left panel of Fig.2 it is meaningful to normalize fluctuations to
the sample estimate of the density, this becomes meaningless in the case shown in the right panel of Fig.2. Thus, in a
finite sampleone needs to set up a strategy to test the different assumptions used in the statistical analysis. To this aim
one has to make a clear distinction between statistical quantities which are normalized to the sample average density
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FIGURE 3. One dimensional density field with large fluctuations: this density field is not self-averaging inside the considered
sample, as the local density varies in a systematic way.

and those which are not. If one wish to determine whether a statistically meaningful estimate of the average density is
possible in the given samples, one should use statistical quantities that do not require the assumption of homogeneity
inside the sample and thus avoid the normalization of fluctuations to the estimation of the sample average. These are
thus conditional quantities, as for example the conditional densityni(r) from the ith galaxy, which gives the density
in a sphere of radiusr centered on theith galaxy. Conditional quantities are well-defined both in thecase of homoge-
neous and inhomogeneous point distributions, as they require only local (i.e., not global) determination of statistical
properties [19].

In general one should consider also another important complication. Statistical properties are determined by making
averages over the whole sample volume [14]. In doing so, one implicitly assumes that a certain quantity measured in
different regions of the sample is statistically stable, i.e., that fluctuations in different sub-regions are described by the
same probability density function (PDF). However it may happen that measurements in different sub-regions show
systematic (i.e., not statistical) differences, which depend, for instance, on the spatial position of the specific sub-
regions (see Fig.3). In this case the considered statistic is not statistically stationary in space, the PDF systematically
differs in different sub-regions and its whole-sample average value is not a meaningful descriptor [14]. In general
such systematic differences may be related to two differentpossibilities: (i) that the underlying distribution is not
translationally and/or rotationally invariant; (ii) thatthe volumes considered are not large enough for fluctuationsto be
self-averaging [18, 19].

For this reason, our first aim is to study whether galaxy distribution is self-averaging by characterizing conditional
fluctuations. If the distribution is self-averaging, then one can consider whole-sample conditional average quantities
and study the possible transition from non-uniformity to uniformity. This can be achieved by characterizing the
behavior of, for instance, the conditional density. If the distribution is uniform, or becomes uniform at a certain scale
smaller than the sample size, one can characterize the (residual) correlations between density fluctuations by studying
the standard two-point correlation function. Therefore the consideration ofξ (r) is the last point in this list, and it is
appropriate only if one has proved that the distribution is self-averaging and uniform inside the given sample. We make
similar tests in the real samples and in the mock catalogs which represent the model predictions. In this way we test
whether large scale structures identified in galaxy catalogs arecompatiblewith the prediction of the standard LCDM
cosmology,
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FIGURE 4. Three dimensional representation of the SL analysis withr = 10 Mpc/h in a SDSS sample (adapted from [19]).

STATISTICAL PROPERTIES OF GALAXY DISTRIBUTION IN THE 2DFGRS AND
SDSS SAMPLES

The main stochastic variable which we consider and of which we determine statistical properties is the conditional
number of points in spheres mentioned above. Namely we compute for each scaler the{Ni(r)}i=1...M determinations
of the number of points inside a sphere of radiusr centered on theith galaxy [19]. The random variableNi(r) depends
thus on the scaler and on the spatial position of the sphere’s center; we can express theith sphere center coordinates
with its radial distanceRi and with its angular coordinates~αi = (ηi ,λi). Thus, in general, we can write

Ni(r) = N(r;Ri ,~αi) . (1)

When we integrate over the angular coordinates~αi for fixed radial distanceRi we have thatNi(r) = N(r;Ri), i.e. it
depends on two variables the length-scale of the spherer and the distance-scale of theith sphere centerRi and thus it
has been called the scale-length analysis [19, 18].

In Fig.4 we show the three-dimensional representation ofN(r;Ri) in a sample of the SDSS-DR6. On theX andY
axis it is reported the coordinate of the center of a sphere ofradiusr = 20 Mpc/h (centered on a galaxy) and on the
Z axis the number of galaxies inside it, normalized to its average value in this sample. The mean thickness of this
slice is about 50 Mpc/h. Large fluctuations in the density field traced by the SL analysisNi(r;R) are located in the
correspondence of large scale structures. The informationcontained in theN(r;Ri) data allow one to quantitatively
determine the properties of these structures in an unambiguous way. For instance we can determine the PDF of
conditional fluctuations. An example is reported in Fig.5. In this sample, extracted from the SDSS [19], the SL
analysis detects large density fluctuations without a clearradial-distance dependent trend. Correspondingly the PDF
has a regular shape characterized by a peak with a longN tail and it is sufficiently statistically stable in different non-
overlapping sub-samples of equal volume. This occurs except for the largest sphere radii, i.e., forr >30 Mpc/h. The



conclusion is that conditional fluctuations in this sample are self-averaging forr < 30 Mpc/h, while they are not self-
averaging forr > 30 Mpc/h because of the limited sample volumes. These fluctuations determine relative variations
larger than unity in the estimation of the average density, in the deepest samples, in spheres of radiusr = 100 Mpc/h.
The homogeneity scale must be> 100 Mpc/h, the largest sphere radius available in SDSS-DR6.The behavior of the
PDF can a priori be determined also by selection effects and not only by fluctuations. However we tested that in the
SDSS known selection effects do not give a relevant contribution: we used volume-limited samples and we made
several tests to determine the importance of cosmological corrections, such as different magnitude-distance relations
(i.e., different cosmological parameters), K-corrections and evolutionary corrections [19]. It is interesting to note that
for r < 20 Mpc/h the PDF of fluctuations displays a “fat tail”, and in this case an excellent fit is given by the Gumbel
distribution [30].

Actually, in the largest samples of SDSS-DR7 we found [30] that over a large range of scales, both the average
conditional density and its variance show a nontrivial scaling behavior. The average conditional density depends, for
10≤ r ≤ 80 Mpc/h, only weakly (logarithmically) on the system size.Indeed, contrary to the case of SDSS-DR6,
in the larger sample volumes of DR7 fluctuations are self-averaging up to∼ 80 Mpc/h. Correspondingly, we find
that the density fluctuations follow the Gumbel distribution of extreme value statistics. This distribution is clearly
distinguishable from a Gaussian distribution, which wouldarise for a homogeneous spatial galaxy configuration. We
concluded that there are similarities between the galaxy distribution and critical systems of statistical physics, which
can display the same two features when correlations are long-ranged. Analogously in the 2dFGRS we found that the
average conditional density presents scaling behavior up to∼ 30 Mpc/h and the PDF of conditional fluctuations show
“fat tails” [16, 17].

Previous analyses of these galaxy catalogs, e.g., considered sample averaged statistics without quantitatively testing
whether a significant bias could affect the results. For instance the estimator of the most commonly used statistics, the
two-point correlation function, can be written as [14]

ξ (r)+1≡
〈n(r)n(0)〉

〈n〉2 = lim
V→∞

N(r,∆r)
V(r,∆r)

·
V
N

, (2)

where in the second equality we have considered the finite sample estimator (in the ensemble average sense the symbol
N should be replaced by〈N〉). The first ratio in the r.h.s. of Eq.2 is the differential average conditional density, i.e.,
the number of galaxies in shells of thickness∆r averaged over the whole sample, divided by the volumeV(r,∆r) of
the shell. The second ratio in the r.h.s. of Eq.2 is the average density estimated in a sample containingN galaxies
and with volumeV. When measuring this function we implicitly assume, in a given sample, that: (i) fluctuations are
self-averaging in different sub-volumes [14] (ii) the linear dimension of the sample volume isV1/3 ≫ λ0 [14], i.e.,
the distribution has reached homogeneity inside the samplevolume. When the latter condition is not verified theξ (r)
analysis is biased by systematic finite size effects even if fluctuations are self-averaging [14]. These two assumptions
can be tested directly by considering conditional fluctuations properties, or indirectly by studying finite-volume effects
on ξ (r) determinations. The result of theξ (r) analysis is however in general not conclusive (see Sect 4.8 of [19]).
For instance, in order to test how estimator bias (e.g., the effect of the integral constraint) affects the results, one can
consider samples with different volumes and study whether there is a convergence to a stable behavior, which was not
found in the case of the LRG samples [13].

Let us now discuss the case of a mock galaxy catalogs. These are generated from N-body simulations of standard
cosmological models [31],Ni(r;R) does not show, forr > 10 Mpc/h, large fluctuations or systematic trends as a
function ofR (Fig.6). This is in agreement with the theoretical expectations based on the linear growth of perturbations
in an expanding universe [19]. Because in these artificial catalogs fluctuations are small and self-averaging, whole-
sample averaged statistics are meaningful at all scales. Correspondingly the PDF rapidly converges to a Gaussian for
r > 10 Mpc/h. Thus mock catalogs, i.e. model predictions, are self-averaging at all scales and uniform forr > 10
Mpc/h [19], and therefore the mock galaxy distribution is qualitatively different from the real one. In agreement with
our results we note that Einasto et al. [32] found that the fraction of very luminous (massive) super-clusters in real
samples extracted from 2dFGRS and from the SDSS (Data Release 4), is more than ten times greater than in simulated
samples. This again points toward a non-trivial disagreement between the galaxy distribution and the mock catalogs,
stressing the fact that galaxy structures are more common inobservations than in the model.



FIGURE 5. Left panels: From top to bottom the SL analysis a SDSS sample, withr = 10,20,40 Mpc/h. The red dots correspond
to an uncorrelated distribution (Poisson) in the same volume and with same number of points.Right panels: Probability density
function ofNi(r;R) in two non-overlapping sub-samples with equal volume (eachhalf of the sample volume) at small and largeR.
While for r = 10,20 Mpc/h the PDF (nearby sub-sample black line and faraway sub-sample blue line) is reasonably statistically
stable, forr = 40 Mpc/h there is a clear difference. The red line corresponds to the Poisson distribution: a Gaussian function gives
very good fits for allr (adapted from [19]).

CONCLUSIONS

We interpret the systematic differences found in the behavior of the PDF of conditional fluctuations as due to a sys-
tematic effect in the fact that sample volumes are not large enough for conditional fluctuations, filtered at such large
scales, to be self-averaging, i.e. to contain enough structures and voids of large size to allow a reliable determination of
average (conditional) quantities. We pointed out the problems related to the estimation of amplitude of fluctuations and
correlation properties from statistical quantities whichemploy the normalization to the estimation of the sample aver-
age. As long as a distribution inside the given sample is not self-averaging, and thus not homogeneous, the estimation
of the two-point correlation function is necessarily biased by strong finite size effects. Our results are incompatible
with homogeneity at scales smaller than∼ 100 Mpc/h. While these results are at odds with LCDM predictions, they
can be compatible, at least theoretically, with a several recent observations which also pose fundamental challenges to
such a model.

For instance, Kashlinsky et al. [33], by studying the fluctuations in the cosmic microwave background generated
by the scattering of the microwave photons by the hot X-ray emitting gas inside clusters, have measured a coherent
flow out to 300 Mpc/h with a fairly high amplitude of 600-103 km/sec. This is incompatible with the standard LCDM
model predictions. Indeed, on such large scales the theoretical predictions are very simple, because in these models
gravitational clustering is still linear at those scales asdensity fluctuations are small on large scales. Similarly Watkins
et al. [34] estimated the bulk flow in all major peculiar velocity surveys finding that the data suggest that the bulk flow
within a Gaussian window of radius 50 Mpc/h is 407 km/s. They noticed that this large-scale bulk motion indicates



FIGURE 6. From top to bottom the SL analysisNi(r;R) for the mock sample VL2, withr = 20,40,100 Mpc/h. Although for
r = 20 Mpc/h fluctuations are still important, they rapidly become small for larger radii without any signature of a radial-distance
dependent trend.Right panels: Probability density function ofNi(r;R) in two different non-overlapping sub-samples with equal
volume (each half of the sample volume) at small (red line) and large (black line)R: the PDF is statistically stable for allr andR.
The blue line corresponds to a Gaussian fit.

that there are significant density fluctuations on very largescales. Indeed, a flow of this amplitude on such a large scale
is not expected in the LCDM model cosmology, for which the predicted one-dimensional r.m.s. velocity is about 110
km/s. Thus the same problem for the model predictions we found in the galaxy density field, are found also for the
galaxy velocity field. They may have the same origin, namely the fact that there are galaxy structures which are too
extended in space and have a too large amplitude to be compatible with the predictions of the standard model. In the
case of the velocity field there is another important element: the velocity field is generated by all the mass and not
only by the luminous component. Thus if the velocity field is so high on such large scales, this may imply that this
is generated by the large scale inhomogeneities present in the overall mass distribution, i.e. luminous plus dark. The
fact that the whole mass distribution is not homogeneous is compatible also with the results on the matter density field
derived by gravitational lens observations, where very extended structures have been found [35]. Thus an important
point which we aim to investigate in future works, concerns the characterizing of the gravitational field generated by
galaxies. When a distribution is inhomogeneous important contributions to the gravitational force acting on a point
can be due to faraway sources [36]. The relation between the large scale inhomogeneities of galaxy distribution and
other observational data should be examined in detail. For instance a statistically significant anisotropy of the Hubble
diagram at redshiftsz< 0.2 was discovered by [37]. A local violation of statistical isotropy and homogeneity, which
may very well happen when matter distribution is inhomogeneous [39, 38], can be related to such findings. although
it is not excluded that a systematic error in the observations or data analysis affect these results.

Finally, it is worth mentioning that Joyce et al. [38] pointed out that an inhomogeneous distribution, as a fractal,
does not preclude the description of its gravitational dynamics in the framework of the Friedmann-Robertson-Walker
solutions to general relativity. Indeed, the problem is often stated as being due to the incompatibility of a fractal



with the Cosmological Principle, where this principle is identified with the requirement that the matter distribution
be isotropic and homogeneous. This identification is in factvery misleading for a non-analytic and inhomogeneous
structure like a fractal, in which all points are equivalentstatistically, satisfying what has been called a Conditional
Cosmological Principle [39, 14]. By treating the fractal asa perturbation to an open cosmology in which the leading
homogeneous component is the cosmic background radiation one may get a simple explanation for the supernovae
data which indicate the absence of deceleration in the expansion. This is indeed a very simplified theoretical model to
interpret the SN data and the large scale inhomogeneities inframework of the Friedmann-Robertson-Walker metric.
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